Conditional value-at-risk bounds for compound Poisson risks and a normal approximation

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conditional Value-at-risk Bounds for Compound Poisson Risks and a Normal Approximation

A considerable number of equivalent formulas defining conditional value-at-risk and expected shortfall are gathered together. Then we present a simple method to bound the conditional value-at-risk of compound Poisson loss distributions under incomplete information about its severity distribution, which is assumed to have a known finite range, mean, and variance. This important class of nonnorma...

متن کامل

conditional copula-garch methods for value at risk of portfolio: the case of tehran stock exchange market

ارزش در معرض ریسک یکی از مهمترین معیارهای اندازه گیری ریسک در بنگاه های اقتصادی می باشد. برآورد دقیق ارزش در معرض ریسک موضوع بسیارمهمی می باشد و انحراف از آن می تواند موجب ورشکستگی و یا عدم تخصیص بهینه منابع یک بنگاه گردد. هدف اصلی این مطالعه بررسی کارایی روش copula-garch شرطی در برآورد ارزش در معرض ریسک پرتفویی متشکل از دو سهام می باشد و ارزش در معرض ریسک بدست آمده با روشهای سنتی برآورد ارزش د...

The Compound Poisson Approximation for a Portfolio of Dependent Risks

A well-known approximation of the aggregate claims distribution in the individual risk theory model with mutually independent individual risks is the compound Poisson approximation. In this paper, we relax the assumption of independency and show that the same compound Poisson approximation will still perform well under certain circumstances.

متن کامل

Large deviations bounds for estimating conditional value-at-risk

In this paper, we prove an exponential rate of convergence result for a common estimator of conditional value-at-risk for bounded random variables. The bound on optimistic deviations is tighter while the bound on pessimistic deviations is more general and applies to a broader class of convex risk measures. © 2007 Elsevier B.V. All rights reserved.

متن کامل

Conditional Value-at-Risk Approximation to Value-at-Risk Constrained Programs: A Remedy via Monte Carlo

W study optimization problems with value-at-risk (VaR) constraints. Because it lacks subadditivity, VaR is not a coherent risk measure and does not necessarily preserve the convexity. Thus, the problems we consider are typically not provably convex. As such, the conditional value-at-risk (CVaR) approximation is often used to handle such problems. Even though the CVaR approximation is known as t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Mathematics

سال: 2003

ISSN: 1110-757X,1687-0042

DOI: 10.1155/s1110757x0320108x